Skip to content Skip to navigation

Large Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties

TitleLarge Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties
Publication TypeJournal Article
Year of Publication2012
AuthorsLee, Eun Kyung, Liang Yin, Yongjin Lee, Jong Woon Lee, Sang Jin Lee, Junho Lee, Seung Nam Cha, Dongmok Whang, Gyeong S. Hwang, Kedar Hippalgaonkar, Arun Majumdar, Choongho Yu, Byoung Lyong Choi, Jong Min Kim, and Kinam Kim
JournalNano Letters
Volume12
Issue6
Pagination2918-2923
Date PublishedJune 13, 2012
ISBN Number1530-6984
Abstract

The strongly correlated thermoelectric properties have been a major hurdle for high-performance thermoelectric energy conversion. One possible approach to avoid such correlation is to suppress phonon transport by scattering at the surface of confined nanowire structures. However, phonon characteristic lengths are broad in crystalline solids, which makes nanowires insufficient to fully suppress heat transport. Here, we employed Si?Ge alloy as well as nanowire structures to maximize the depletion of heat-carrying phonons. This results in a thermal conductivity as low as ?1.2 W/m-K at 450 K, showing a large thermoelectric figure-of-merit (ZT) of ?0.46 compared with those of SiGe bulks and even ZT over 2 at 800 K theoretically. All thermoelectric properties were ?simultaneously? measured from the same nanowires to facilitate accurate ZT measurements. The surface-boundary scattering is prominent when the nanowire diameter is over ?100 nm, whereas alloying plays a more important role in suppressing phonon transport for smaller ones.

URLhttp://dx.doi.org/10.1021/nl300587u
Short TitleNano Lett.